
Stat 5870: Key points and formulae Week 10

Linear regression: Interpretation of coefficients when one or both variables log transformed:
Y is log transformed: log Yi = β0 + β1X + εi

Similar to ANOVA on log Y Adding 1 to X adds β1 to log Y
So median Y multiplied by exp β1

X is log transformed: Yi = β0 + β1 logXi + εi
example: meat pH data: X is log hours.
Increasing X by log 2 ≈ 0.693 is a doubling of hours (1 → 2 or 3 → 6).
So log 2× β1 = 0.693× β1 is increase in mean Y when double the hours.

Can have log-log regression: log Yi = β0 + β1 logXi + εi
Combine logX with log Y : doubling X multiplies median Y by exp(0.693β1)

Estimating β0 and β1:
Concept: find β0 and β1 so that predicted values are close to all observed values
Define closeness by sum of squared residuals = SSE,

find β̂0 and β̂1 that minimize SSE.

β̂1 =
Σ(Xi −X)Yi

Σ(Xi −X)2

β̂0 = Y − β̂1X

History:
Procedure often called “least squares” or ordinary least squares (OLS)

Credited to Gauss (1795 or 1809) or Legendre (1805)
Called regression because of Galton 1896

“Regression to mediocrity”: now called heritability,
but regression has stuck as the name for fitting Galton’s line

Connection to linear trend contrast:
Linear regression estimated slope, fit to observations:

β̂1 =
Σ(Xi −X)Yi

Σ(Xi −X)2

Data in groups, calculate Y i. for each unique X
Fit regression to group means (Xi, Y i.)

β̂1 =
Σ(Xi −X)Y i.

Σ(Xi −X)2
= Σ

(
Xi −X

Σ(Xi −X)2

)
Y i.

Linear trend contrast is the numerator of the slope estimate:

β̂1 = Σ(Xi −X)Y i.

can get the slope as a contrast (by including the denominator)
test of slope = 0 and test of linear trend contrast = 0 have the same numerator
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have different se’s because s2 estimated differently
almost always very, very similar

Estimating error variance, s2:
s is the sd of observations around the best fitting line
Assume straight line fits the data
residual = Yi − Ŷi, where Ŷi = β̂0 + β̂1 Xi

mean square error = s2 = Σ (Yi − Ŷi)2/error df
error df: N − 2. Why 2? need to estimate 2 parameters, β̂0 and β̂1

Precision of estimates:
As expected, more obs increases precision but two other features
Slope:

se β̂1 = s

√
1

(N − 1)s2X

s2X is variance in X values. more spread out X’s increase precision
Intercept:

se β̂0 = s

√
1

N
+

X
2

(N − 1)s2X

larger X decreases precision
If X’s close to 0, intercept more precise
If X’s a long way from X = 0, intercept less precise

Inference: (very familiar once have est. and se)
(β̂ − β)/se β̂ has a T distribution with N − 2 df
You know how to construct tests and confidence intervals for individual parameters.

Useful tests:
β0 = 0: not often useful
β1 = 0: does mean Y change with X? Ho: no linear relationship

T test using β̂1
Test Ho: β1 = 0 using model comparison. Two models:

full: Yi = β0 + β1 Xi + εi
reduced: Yi = β0 + εi (same as equal means model)
Reject Ho when full fits much better than reduced, i.e., slope 6= 0
Can compute F statistic directly, or use an ANOVA table
Same p-value as T test, and F = t2, since hypothesis has 1 df

Predictions at specific X values:
Could be X’s used to fit regression or new X’s
Two different types of predictions

Predicting mean Y at a specified X
Predicting individual Y for one observation at a specified X

2



Stat 5870: Key points and formulae Week 10

Same predicted value, different uncertainty

Predicting mean Y : confidence interval for a predicted mean
If β0, β1 known, then prediction = β0 + β1 X0

No uncertainty! because β0, β1 known
Estimate: Ŷ0 = β̂0 + β̂1 X0

Uncertain because of uncertainty in β0, β1

se Ŷ0 = s

√
1

N
+

(X0 −X)2

(N − 1)s2X

se formula demonstrates:
1) se β̂0 = se Ŷ0 when X0 = 0
2) se Ŷ0 not constant. depends on X0

smallest se when X0 = X, increases as move away from X.

Predicting Y for one observation: prediction interval for a new observation
If β0, β1 known, then prediction = β0 + β1 X0

This has uncertainty, because Y values are not on the line
Standard deviation of observations around the line is s

Estimate Ŷpred = β̂0 + β̂1 X0

Predicted new observations have two sources of variability:
1) variability in the mean, se Ŷ0
2) variability around the line, se Y | Ŷ0

Add variances
1) has variance s2

(
1
N

+ (X0−X)2

(N−1)s2X

)
when doing SLR

2) has variance s2

For SLR:

se Ŷpred = s

√
1 +

1

N
+

(X0 −X)2

(N − 1)s2X

In general (need se Ŷ0 from computer):

se Ŷpred =

√(
se Ŷ0

)2
+ s2

Calibration:
When does meat pH drop to 6.0?

Easy if Y = time, X = pH, X0 = 6.0
Choice of Y and X matters.

All error variation in Y direction
X assumed known without error

Meat: time known exactly (set by experimenter) so X = time
Need to predict X0 for specified Y0
Known as the “calibration” problem
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because calibration curves are a common application
X = known concentration, Y = measured signal,
want to predict concentration given a measurement

Prediction:

X̂0 =
Y0 − β̂0
β̂1

Precision: Approx. se X̂0 = (se Ŷobs)/β̂1 ≈ s/β̂1
Confidence intervals and better se estimates can be computed

But beyond this course.

How I choose which is X and which is Y for a regression:
Experimental study: X is the manipulated variable, no choice
Observational study: 3 approaches
X is the antecedant concept; Y is the consequent concept
X is the more precisely measured variable
What do you want to predict? That’s Y

Regression Assumptions:
Usual 3: independence, equal variances, normality
Plus: have correct model for the mean, “no lack of fit”.
Importance: depends on goal, prediction interval is the most demanding

Assumption estimates tests prediction interval
linearity *** *** ***
independence ok *** ***
equal variance ok * ***
normality ok ok ***

Diagnoses:
plot of residuals vs predicted values

usual: no outliers, no trumpet
new: smile or frown ⇒ lack of fit

formal tests of lack of fit
Fit a more complicated model (e.g., Yi = β0 + β1 Xi + β2 X

2
i + εi)

When have > 1 obs at same X’s, can fit regression or ANOVA
ANOVA lack of fit test

ANOVA (different mean for each unique X) always fits
regression may or may not fit
Construct ANOVA table with full = ANOVA, reduced = regression
Requires multiple observations with same X values (so can fit ANOVA)

Computing ANOVA lack of fit test:
Need to compare two models:
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Regression: regression model describes the means at each X
Separate means: need to model a unique mean for each X

Can fit each model (regression, ANOVA) to get SS Error and df error for each
Hand compute F statistic
Or: anova(regression, sepmeans) in R will compare the two
JMP Fit Model gives you the Lack of Fit test automatically

results box may be minimized, if so, click the grey triangle to open it
Easier way to compute the lof test in R or SAS (also works in JMP, but not necessary):

make a copy of the X variable, call it Xc and declare it a factor/class variable/red bar
write the model as:

R: y.lof <- lm(Y ~ X + Xc, data= ...),
SAS: model Y = X Xc,
JMP: put X then Xc into model effects box

Type I SS (and tests) are “sequential” SS:
change in fit when add Xc to a model already containing X

Type III SS (and tests) are “partial” SS:
change in fit when add any term to model with everything else
Will talk a lot more about the difference soon

The ANOVA lack of fit test requires Type I SS = sequential SS and tests
How to get from software: In all cases, look at the Xc results (the factor version)

R: anova(y.lof) gives you sequential SS and tests
SAS: gives you both Type I and Type III tests - look for the Type I box
JMP: Effect tests box is Type III tests,

red triangle / Estimates / Sequential Tests adds the Type I tests

Correlation:
What should I do when X and Y are equivalent?

Could swap without changing “meaning”
Almost always observational data

Correlation between X and Y
unitless measure of association between X and Y

r =
Σ(Yi − Y )(Xi −X)

(N − 1)sXsY

1 = perfect positive, 0 = no linear association, -1 = perfect negative
Can test ρ = 0 and construct confidence intervals for ρ - Beyond this course

Connection to regression slope

r = β̂1
sx
sy

Test of ρ = 0 gives same p-value as test of β1 = 0
but adds another assumption: (X,Y) is a simple random sample of individuals

“R-squared”: r2

takes values from 0 to 1
1 = perfect linear association (+ or -) between two variables
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Compute as correlation coefficient squared
Can compute from regression ANOVA table:

r2 = 1− full SSE

c.total SSE

often reported for regressions
and interpreted as a measure of “goodness” of the regression

I hate this
1) meat pH: correlation between time (not log time) and pH: r = −0.966
r2 = 0.933 Very large. Stupid regression: not linear

2) based on sample but interpreted as population quantity
depends on sampling design - often not a simple random sample
Collect data over small range of X ⇒ small R2

Collect data over large range of X ⇒ large R2

Even though relationship between X and Y is identical
I suggest R2 has no meaning unless you have a simple random sample of observations

Not just simple random sample of Y at chosen X’s

Better measures of “goodness” of a regression: all my opinion
Why are you fitting a regression?
To estimate a slope: how precise is that slope? report se β̂1 or ci for β1
To predict new observations: how precise are those predictions: report se Ŷobs or s
Not clear: I would report s
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